Department News
System Reductions for Inverse Problems
Seminar Date
2005-09-15
Author
임아주
Date
2005-09-15
Views
1824
1. 제 목 : System Reductions for Inverse Problems
2. 연 사 : 김 기욱
3. 일 시 : 2005년 9월 15일(목)
4. 장 소 : 301동 호 세미나실
5. 내 용 : A modal method combined with system condensation is presented for the assessment of selection optimality and solution accuracy in inverse problems of structural optimization and damage detection. Finite element procedures are applied to seek the structural modifications for the characteristics changes assigned from design goals or dynamic measurements. The solution convergence is related to the selection of degrees of freedom and the method of system transformation. The application of the dynamic stiffness matrix yields a frequency-dependent transformation matrix, which can be expanded into an infinite series to obtain lower-order approximations. The modal matrix may be used to project the measured data onto the mode shapes, in which case much emphasis is laid on the linear independence of the selected degrees of freedom and the condition number of the transformation matrix.
6. 연사약력 :
1969 03-01 - 1975 02-26 ; 서울대학교 공과대학 항공공학과
1980 01-05 - 1983 08-23 ; Ph. D The University of Michigan Dept. of Aerospace Engineering
1975 10-01 - 1979 09-31 ; 공군 사관학교 교관
1984 04-01 - 1988 02-21 ; The MacNeal-Schwendler Corporation
1988 03-01 - 현재 ; 인하대학교 공과대학 항공우주공학과 교수
7. 문 의 : 기계항공공학부 조 맹 효 ( ☎ 880 - 1693 )
2. 연 사 : 김 기욱
3. 일 시 : 2005년 9월 15일(목)
4. 장 소 : 301동 호 세미나실
5. 내 용 : A modal method combined with system condensation is presented for the assessment of selection optimality and solution accuracy in inverse problems of structural optimization and damage detection. Finite element procedures are applied to seek the structural modifications for the characteristics changes assigned from design goals or dynamic measurements. The solution convergence is related to the selection of degrees of freedom and the method of system transformation. The application of the dynamic stiffness matrix yields a frequency-dependent transformation matrix, which can be expanded into an infinite series to obtain lower-order approximations. The modal matrix may be used to project the measured data onto the mode shapes, in which case much emphasis is laid on the linear independence of the selected degrees of freedom and the condition number of the transformation matrix.
6. 연사약력 :
1969 03-01 - 1975 02-26 ; 서울대학교 공과대학 항공공학과
1980 01-05 - 1983 08-23 ; Ph. D The University of Michigan Dept. of Aerospace Engineering
1975 10-01 - 1979 09-31 ; 공군 사관학교 교관
1984 04-01 - 1988 02-21 ; The MacNeal-Schwendler Corporation
1988 03-01 - 현재 ; 인하대학교 공과대학 항공우주공학과 교수
7. 문 의 : 기계항공공학부 조 맹 효 ( ☎ 880 - 1693 )